If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2+52y+32=0
a = 15; b = 52; c = +32;
Δ = b2-4ac
Δ = 522-4·15·32
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-28}{2*15}=\frac{-80}{30} =-2+2/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+28}{2*15}=\frac{-24}{30} =-4/5 $
| (4x-24)/5=16 | | y^2=164 | | 1/2z+5=-3 | | 82+4x-42=180 | | 2n-5=8n+9 | | 66+3x+39=180 | | X^2+2x-15=180 | | 2(j-7)+-11=3 | | (4x-2)(11x+17)=1810 | | (4x-2)(11x+17)=180 | | 2/3(3x+9)=-2(2x=6)+7 | | -3.8x=-26.6 | | 3x-5+2x+4=360 | | 8m=-13+53 | | 4(8g+8)=7+4g | | 13x-8=9x+20 | | 14x+2+13x+16=180 | | (2x-12)/5=8 | | 3w+10=5w-2(w-5) | | Y=-2.75c+20 | | N=-2.75c+20 | | 56=2h+10 | | 9y-11y+8=4y+20 | | 10m=-45+95 | | 6x-300=180 | | 4x+2+x=7x-4 | | .75x-12=9 | | 80=10(u+3) | | 2(0)-y+7=0 | | 9x+9+9x+9+50=360 | | n/4+-8=20 | | 35x+12=107 |